Sum Rules for Jacobi Matrices and Divergent Lieb-thirring Sums

نویسنده

  • ANDREJ ZLATOŠ
چکیده

Let Ej be the eigenvalues outside [−2, 2] of a Jacobi matrix with an − 1 ∈ ` and bn → 0, and μ′ the density of the a.c. part of the spectral measure for the vector δ1. We show that if bn / ∈ `, bn+1 − bn ∈ `, then ∑ j (|Ej | − 2) = ∞, and if bn ∈ `, bn+1 − bn / ∈ `, then ∫ 2 −2 ln(μ′(x))(4− x) dx = −∞. We also show that if an − 1, bn ∈ `, then the above integral is finite if and only if an+1 − an, bn+1 − bn ∈ `. We prove these and other results by deriving sum rules in which the a.c. part of the spectral measure and the eigenvalues appear on opposite sides of the equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lieb-Thirring Inequalities for Jacobi Matrices

For a Jacobi matrix J on l(Z+) with Ju(n) = an−1u(n− 1) + bnu(n) + anu(n+ 1), we prove that ∑

متن کامل

Critical Lieb–thirring Bounds for One-dimensional Schrödinger Operators and Jacobi Matrices with Regular Ground States

While Lieb–Thirring [14] developed their bounds for their proof of stability of matter, they realized that power law bounds on eigenvalues were valid in any dimension over a natural range of powers. Their method only worked for powers above the critical lower bound on possible powers. In dimension ν ≥ 3, the critical power is 0 and the resulting inequality is the celebrated CLR bound [3, 13, 16...

متن کامل

Eigenvalue Bounds in the Gaps of Schrödinger Operators and Jacobi Matrices

We consider C = A+B where A is selfadjoint with a gap (a, b) in its spectrum and B is (relatively) compact. We prove a general result allowing B of indefinite sign and apply it to obtain a (δV ) bound for perturbations of suitable periodic Schrödinger operators and a (not quite) Lieb–Thirring bound for perturbations of algebro-geometric almost periodic Jacobi matrices.

متن کامل

Critical Lieb-thirring Bounds in Gaps and the Generalized Nevai Conjecture for Finite Gap Jacobi Matrices

We prove bounds of the form ∑ e∈I∩σd(H ) dist ( e, σe(H ) )1/2 ≤ L-norm of a perturbation, where I is a gap. Included are gaps in continuum one-dimensional periodic Schrödinger operators and finite gap Jacobi matrices, where we get a generalized Nevai conjecture about an L1-condition implying a Szegő condition. One key is a general new form of the Birman-Schwinger bound in gaps.

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics on the Lieb{thirring Estimates for the Pauli Operator on the Lieb-thirring Estimates for the Pauli Operator

We establish Lieb-Thirring type estimates for the sums P k j k j of the negative eigenvalues k of the two-dimensionalPauli operator with a non-homogeneous magnetic eld perturbed by a decreasing electric potential.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004